
MAT8034: Machine Learning

Reinforcement Learning II

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Slide credits: ai.berkeley.edu

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Exploration vs. Exploitation

Exploration vs. Exploitation

§ Exploration: try new things
§ Exploitation: do what’s best given what you’ve learned so far
§ Key point: pure exploitation often gets stuck in a rut and never

finds an optimal policy!

3

Exploration method 1: e-greedy

§ e-greedy exploration
§ Every time step, flip a biased coin
§ With (small) probability e, act randomly
§ With (large) probability 1-e, act on current policy

§ Properties of e-greedy exploration
§ Every s,a pair is tried infinitely often
§ Does a lot of stupid things

§ Jumping off a cliff lots of times to make sure it hurts
§ Keeps doing stupid things for ever

§ Decay e towards 0

Demo Q-learning – Epsilon-Greedy – Crawler

Method 2: Optimistic Exploration Functions

§ Exploration functions implement this tradeoff
§ Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g., f(u,n) = u + k/Ön

§ Regular Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxaQ (s’,a)]

§ Modified Q-update:
§ Q(s,a) ¬ (1-a) × Q(s,a) + a × [R(s,a,s’) + γ maxa f(Q (s’,a’),n(s’,a’))]

§ Note: this propagates the “bonus” back to states that lead to
unknown states as well!

Demo Q-learning – Exploration Function – Crawler

Approximate Q-Learning

Generalizing Across States

§ Basic Q-Learning keeps a table of all Q-values

§ In realistic situations, we cannot possibly learn
about every single state!
§ Too many states to visit them all in training
§ Too many states to hold the Q-tables in memory

§ Instead, we want to generalize:
§ Learn about some small number of training states from

experience
§ Generalize that experience to new, similar situations
§ Can we apply some machine learning tools to do this?

[demo – RL pacman]

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Demo Q-Learning Pacman – Tiny – Watch All

Demo Q-Learning Pacman – Tiny – Silent Train

Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations
§ Solution: describe a state using a vector of
features
§ Features are functions from states to real

numbers (often 0/1) that capture important
properties of the state

§ Example features:
§ Distance to closest ghost fGST
§ Distance to closest dot
§ Number of ghosts
§ 1 / (distance to closest dot) fDOT
§ Is Pacman in a tunnel? (0/1)
§ …… etc.

§ Can also describe a q-state (s, a) with features
(e.g., action moves closer to food)

Linear Value Functions

§ We can express V and Q (approximately) as weighted linear
functions of feature values:
§ 𝑉!(s) = 𝜃1f1(s) + 𝜃2f2(s) + … + 𝜃nfn(s)
§ 𝑄!(s,a) = 𝜃1f1(s,a) + 𝜃2f2(s,a) + … + 𝜃nfn(s,a)

§ Advantage: our experience is summed up in a few powerful numbers
§ Can compress a value function for chess (1043 states) down to about 30 weights!

§ Disadvantage: states may share features but have very different expected utility!

SGD for Linear Value Functions

§ Goal: Find parameter vector 𝜃 that minimizes the mean squared
error between the true and approximate value function

§ Stochastic gradient descent:

Supervised Learning for Value Function Approximation

§ Let denote the true target value function
§ Use supervised learning on "training data" to predict the value

function:

§ For each data sample

Temporal-Difference (TD) Learning Objective

§ In TD learning, is a data sample for the
target

§ Apply supervised learning on "training data":

§ For each data sample, update

Q-Value Function Approximation

§ Approximate the action-value function:

§ Objective: Minimize the mean squared error:

§ Stochastic Gradient Descent on a single sample

Intuitive interpretation

§ Original Q-learning rule tries to reduce prediction error at s,a:
§ Q(s,a) ¬ Q(s,a) + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)]

§ Instead, we update the weights to try to reduce the error at s,a:
§ wi ¬ wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] ¶Qw(s,a)/¶wi

= wi + a × [R(s,a,s’) + γ maxa’ Q (s’,a’) - Q(s,a)] fi(s,a)
§ Intuitive interpretation:

§ Adjust weights of active features
§ If something bad happens, blame the features we saw; decrease value of

states with those features. If something good happens, increase value!

Example: Q-Pacman
Q(s,a) = 4.0 fDOT(s,a) – 1.0 fGST(s,a)

Q(s,a) = 3.0 fDOT(s,a) – 3.0 fGST(s,a)

s’s
fDOT(s,NORTH) = 0.5

fGST(s,NORTH) = 1.0

Q(s’,×) = 0 Q(s,NORTH) = +1
r + γ maxa’ Q (s’,a’) = – 500 + 0

difference = –501
wDOT ¬ 4.0 + a[–501]0.5
wGST ¬ –1.0 + a[–501]1.0

a = NORTH
r = –500

Demo Approximate Q-Learning -- Pacman

Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution
2. Learn values from experiences, use to make decisions

a. Direct evaluation
b. Temporal difference learning
c. Q-learning

3. Optimize the policy directly

Policy Search

Policy Search

§ Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
§ E.g. your value functions were probably horrible estimates of future rewards, but they still produced

good decisions
§ Q-learning’s priority: get Q-values close (modeling)
§ Action selection priority: get ordering of Q-values right (prediction)

§ Solution: learn policies that maximize rewards, not the values that predict them

§ Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
(or gradient ascent!) on feature weights

Parameterized Policy

§ A policy can be parameterized as

§ The policy can be deterministic:
§ Or stochastic:

§ θ represents the parameters of the policy

Policy Gradient

§ Simplest version:
§ Start with initial policy 𝜋(𝑠) that assigns probability to each action
§ Sample actions according to policy 𝜋
§ Update policy:

§ If an episode led to high utility, make sampled actions more likely
§ If an episode led to low utility, make sampled actions less likely

Policy Gradient in a Single-Step MDP

§ Consider a simple single-step Markov Decision Process (MDP)
§ The initial state is drawn from a distribution:
§ The process terminates after one action, yielding a reward 𝑟"#

§ Expected Value of the Policy

Likelihood Ratio Trick

§ Uses the identity:

§ The gradient of the expected return can be written as:

Can be
approximated by
sampling s from

d(s) and a from 𝜋!

Extension to Multi-step MDP

§ Replace the instantaneous reward r(s,a) with the Q-value

Richard Sutton’s Reinforcement Learning: An Introduction (Chapter 13)

REINFORCE Algorithm

§ Use the cumulative reward 𝐺! as an estimator for

§

REINFORCE Algorithm 2

§ Can average multiple roll-out returns

Limitations of the REINFORCE Algorithm

§ Episodic data requirement
§ REINFORCE typically requires tasks to terminate in order to compute

the full return 𝐺$
§ Low data efficiency

§ In practice, REINFORCE needs a large amount of training data to achieve
stable learning

§ High variance in training (most critical issue)
§ The estimated returns from sampled trajectories can have very high

variance, making gradient estimates noisy and unstable

Actor-Critic

§ Intuition
§ REINFORCE estimates the policy gradient using Monte Carlo returns
𝐺$ to approximate 𝑄(𝑠$, 𝑎$)

§ Why not learn a trainable value function 𝑄%(𝑠, 𝑎) to estimate 𝑄&(𝑠, 𝑎)
directly?

§ Actor and critic

Actor Critic

Improve the policy
based on value

estimates provided by
the critic

Evaluate the value of
actions taken by the

actor’s policy

Training of the Actor-Critic Algorithm

§ Critic: 𝑄"(𝑠, 𝑎)
§ Learns to accurately estimate the action-value under the current actor

policy

§ Actor: 𝜋#(𝑎|𝑠)
§ Learns to take actions that maximize the critic’s estimated value

A2C: Advantageous Actor-Critic

§ Idea: Normalize the critic’s score by subtracting a baseline
function (often a value function V(s))
§ Provides more informative feedback:

§ Decrease the probability of worse-than-average actions
§ Increase the probability of better-than-average actions

§ Helps to further reduce variance in policy gradient estimates

Training of A2C

§ Connection between Q-value and value function

§ To approximate the advantage function

Sample the next
state s‘

Case Studies of Reinforcement Learning!

§ Atari game playing
§ Robot Locomotion
§ Language assistants

Case Studies: Atari Game Playing

Case Studies: Atari Game Playing

§ MDP:
§ State: image of game screen

§ 25684*84 possible states
§ Processed with hand-designed feature vectors or neural

networks

§ Action: combination of arrow keys + button (18)
§ Transition T: game code (don’t have access)
§ Reward R: game score (don’t have access)

§ Very similar to our pacman MDP
§ Use approximate Q learning with neural

networks and ε-greedy exploration to solve
[Human-level control through deep
reinforcement learning, Mnih et al, 2015]

Case Studies: Robot Locomotion

§ https://www.youtube.com/watch?v=cqvAgcQl6s4

Case Studies: Robot Locomotion

§ MDP:
§ State: image of robot camera + N joint angles + accelerometer + …

§ Angles are N-dimensional continuous vector!
§ Processed with hand-designed feature vectors or neural networks

§ Action: N motor commands (continuous vector!)
§ Can’t easily compute max 𝑄(𝑠ʹ, 𝑎) when 𝑎 is continuous
§ Use policy search methods or adapt Q learning to continuous actions

§ Transition T: real world (don’t have access)
§ Reward R: hand-designed rewards

§ Stay upright, keep forward velocity, etc

§ Learning in the real world may be slow and unsafe
§ Build a simulator and learn there first, then deploy in real world [Extreme Parkour

with Legged Robots,
Cheng et al, 2023]

Case Studies: Language Assistants

Case Studies: Language Assistants

§ Step 1: train large language model to mimic human-written text
§ Query: “What is population of Berkeley?”
§ Human-like completion: “This question always fascinated me!”

§ Step 2: fine-tune model to generate helpful text
§ Query: “What is population of Berkeley?”
§ Helpful completion: “It is 117,145 as of 2021 census”

§ Use Reinforcement Learning in Step 2

Case Studies: Language Assistants

§ MDP:
§ State: sequence of words seen so far (ex. “What is population of Berkeley? ”)

§ 100,000!,### possible states
§ Huge, but can be processed with feature vectors or neural networks

§ Action: next word (ex. “It”, “chair”, “purple”, …) (so 100,000 actions)
§ Hard to compute max 𝑄(𝑠ʹ, 𝑎) when max is over 100K actions!

§ Transition T: easy, just append action word to state words
§ s: “My name“ a: “is“ s’: “My name is“

§ Reward R: ???
§ Humans rate model completions (ex. “What is population of Berkeley? ”)

§ “It is 117,145“: +1 “It is 5“: -1 “Destroy all humans“: -1

§ Learn a reward model 𝑅 and use that (model-based RL)

§ Often use policy gradient (Proximal Policy Optimization) but looking into Q Learning

Summary

§ Exploration in Q-learning
§ Epsilon greedy; optimistic function

§ Scaling up with feature representations and approximation
§ Policy gradient

§ REINFORCE; Actor-Critic

§ Some case studies

§ Next lecture: deep RL

