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Exploration vs. Exploitation
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Exploration vs. Exploitation

" Exploration: try new things
" Exploitation: do what’s best given what you’ve learned so far

= Key point: pure exploitation often gets stuck in a rut and never
finds an optimal policy!



Exploration method 1: e-greedy

= ¢-greedy exploration
" Every time step, flip a biased coin
= With (small) probability ¢, act randomly
= With (large) probability 1-¢, act on current policy /(

" Properties of e-greedy exploration
" Every s,a pair is tried infinitely often
" Does a lot of stupid things
= Jumping off a cliff lots of times to make sure it hurts

= Keeps doing stupid things for ever
" Decay € towards O




Demo Q-learning — Epsilon-Greedy — Crawler




Method 2: Optimistic Exploration Functions

Exploration functions implement this tradeoff

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g., f(u,n) =u + k/\/n

Regular Q-update: )
" Q(s,a) « (1-a) - Q(s,a) + a - [R(s,a,s") +y max,Q(s’,a) ]
Modified Q-update:

" Q(s,a) « (1-a)-Qfs,a) + a-[R(s,a,s’) +y max, f(Q(s’,a’),n(s’,a’)) ]

Note: this propagates the “bonus” back to states that lead to
unknown states as well!




Demo Q-learning — Exploration Function — Crawler




Approximate Q-Learning




Generalizing Across States

Basic Q-Learning keeps a table of all Q-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

= Too many states to hold the Q-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience

= Generalize that experience to new, similar situations
= Can we apply some machine learning tools to do this?

[demo — RL pacman]



Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:




Demo Q-Learning Pacman — Tiny — Watch All




Demo Q-Learning Pacman — Tiny — Silent Train




Demo Q-Learning Pacman — Tricky — Watch All




Feature-Based Representations

= Solution: describe a state using a vector of
features

= Features are functions from states to real
numbers (often 0/1) that capture important
properties of the state

= Example features:

= Distance to closest ghost f..;
Distance to closest dot
Number of ghosts
1 / (distance to closest dot) ;o7
= |s Pacman in a tunnel? (0/1)
- etc.

= Can also describe a g-state (s, a) with features
(e.g., action moves closer to food)




Linear Value Functions

" We can express V and Q (approximately) as weighted linear
functions of feature values:

" Vg(s) = 0,f,(s) + O,f,(s) + ... + 0. (s)
" (Jg(s,a) = 0,f,(s,a) + 0,,(s,a) + ... + 0,f (s,a)

= Advantage: our experience is summed up in a few powerful numbers
= Can compress a value function for chess (10* states) down to about 30 weights!

= Disadvantage: states may share features but have very different expected utility!



SGD for Linear Value Functions

" Goal: Find parameter vector 6 that minimizes the mean squared
error between the true and approximate value function

1
J(6) = Eql5 (V"(s) = Vo(s))']

" Stochastic gradient descent:

0/ (6)
a0

=0+ a(V”(s) — Vy (S))

00—«

dVp(s)
a6




Supervised Learning for Value Function Approximation

" Let V™(s) denote the true target value function
" Use supervised learning on "training data" to predict the value

function:
(S]_; Gl)l (SZI GZ )) LN’ (ST; GT)

" For each data sample
0« 0+ a(G, —Vy(s))x(st)



Temporal-Difference (TD) Learning Objective

0 <0+ a(V”(s) — Vg (s))x(s)

" InTD learning, 1¢4q4 + ¥V (S¢41) is a data sample for the
target

= Apply supervised learning on "training data":
(s1,72 + YVo(52)), (52,13 + ¥V (S3)), e, (ST, 1)

" For each data sample, update

0 <0+ “(rt+1 + ¥Vo(St+1) — Vo (5))x(5t)



Q-Value Function Approximation
" Approximate the action-value function:
QB(S' a) = Qn(si a)
" Objective: Minimize the mean squared error:
1 2
J(0) = By |5 (07(s5,0) — Qg 5, @))?]

" Stochastic Gradient Descent on a single sample

0Qp(s,a)

0«0+ a(rt+1 +YQo(St+1, A1) — Qo (s, a)) 90



Intuitive interpretation

= Original Q-learning rule tries to reduce prediction error at s,a:
" Q(s,a) « Q(s,a) + a-[R(s,a,s’) +y max, Q(s’,a’)-Q(s,a) ]
" |nstead, we update the weights to try to reduce the error at s,a:
" w, <« W;+ a-[R(s,a,s’)+y max, Q(s’,a’) - Q(s,a) ] 0Q(s,a)/ow;
= w;+ o - [R(s,a,s’) + y max, Q(s’,a’) - Q(s,a) ] fi(s,a)
= |ntuitive interpretation:
" Adjust weights of active features

" |f something bad happens, blame the features we saw; decrease value of
states with those features. If something good happens, increase value!



Example:

Q-Pacman

Q(s,a) = 4.0 fpor(s,a) — 1.0 fger(s,a)

foor(S,NORTH) = 0.5

feer(s,NORTH) = 1.0

) 4

a = NORTH ,
r = —500 S

J -

Q(s,NORTH) = +1

r+y max, Q(s’,a’)=—500+0

-

g

difference = -501 >

Q(s,a) = 3.0 fpor(s,a) — 3.0 fger(s,a)




Demo Approximate Q-Learning -- Pacman




Approaches to reinforcement learning

1. Model-based: Learn the model, solve it, execute the solution

2. Learn values from experiences, use to make decisions
a. Direct evaluation
b. Temporal difference learning
c. Q-learning

[ 3. Optimize the policy directly]




Policy Search




Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
= E.g. your value functions were probably horrible estimates of future rewards, but they still produced
good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
(or gradient ascent!) on feature weights



Parameterized Policy

= A policy can be parameterized as mg(als)

* The policy can be deterministic: a = mg(s)
= Or stochastic: mg(al|s) = P(als; 0)

" O represents the parameters of the policy



= Simplest version:
= Start with initial policy m(s) that assigns probability to each action
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Policy Gradient

= Sample actions according to policy T

= Update policy:

= |f an episode led to high utility, make sampled actions more likely

= |f an episode led to low utility, make sampled actions less likely
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Policy Gradient in a Single-Step MDP

" Consider a simple single-step Markov Decision Process (MDP)
= The initial state is drawn from a distribution: s ~ d(s)

" The process terminates after one action, yielding a reward 7,

" Expected Value of the Policy

J©) = Egylr] = ) d(s) ) mp(als)rg

SES acA

a](9) z ()zaﬂe(GIS)

SES acA




Likelihood Ratio Trick

= Uses the identity: 9melals) _ 1 dmg(als)
y a0~ el S T a6
B dlogmg(als)
= mg(als) EY:

" The gradient of the expected return can be written as:

J©) = E,lrl = ) d(s) ) 74 @l

5 ( ) sEéS‘ ( |a§A
] 6 Ttg(a|S
Ed( )Z Tsa
SES AEA  cesssasresevenc '_____I
dlogmy (als :
zd(S)zne(aIS) 870 (al ) | Can be
SES acA ""---“----------—-' approximated by

dlogmg(als) sampling s from
— LErg [ PY:) sa] d(S) and a from g



Extension to Multi-step MDP

" Replace the instantaneous reward r(s,a) with the Q-value

0/(6) _ . |dlogme(als)
00 e 00

Q™0(s,a)

Richard Sutton’s Reinforcement Learning: An Introduction (Chapter 13)



REINFORCE Algorithm

= Use the cumulative reward G, as an estimator for Q™¢(s, a)

" initialize 6 arbitrarily
for each episode {s{,a,ry,...,ST_1,aT-1,I'T}~Tg dO
for t=1 to T—1 do

0 <0+ a%logne (a;|s;)Gy
end for

end for
return @



REINFORCE Algorithm 2

" Can average multiple roll-out returns

St a;

_ 1 n :
Ge=%) 6O



Limitations of the REINFORCE Algorithm

= Episodic data requirement

= REINFORCE typically requires tasks to terminate in order to compute
the full return G,

" | ow data efficiency

" |n practice, REINFORCE needs a large amount of training data to achieve
stable learning

" High variance in training (most critical issue)

" The estimated returns from sampled trajectories can have very high
variance, making gradient estimates noisy and unstable



Actor-Critic

" |ntuition

= REINFORCE estimates the policy gradient using Monte Carlo returns
G; to approximate Q(s¢, a;)

= Why not learn a trainable value function Q4 (s, a) to estimate Q" (s, a)
directly?

= Actor and critic

————————————————————————————————————————————————————————

Actor g (als) Critic  Qo(s,a)

Improve the policy
based on value
estimates provided by
the critic

Evaluate the value of
actions taken by the
actor’s policy

P B
e o o e o = =
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Training of the Actor-Critic Algorithm

= Critic: Qg (s, a)
= Learns to accurately estimate the action-value under the current actor
policy
Q(D (S, Cl) = T'(S, (1) T y]E5'~p(S'|S,a),a'~7T9(a'|S') [QCD (S’, a’)]

= Actor: mg(als)
= | earns to take actions that maximize the critic’s estimated value
J(0) = Esepnylme(als)Qa(s, a)l

0j(0) _ . [0logme(als)
a0 o 00

QCD (S' a)
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A2C: Advantageous Actor-Critic

" |dea: Normalize the critic’s score by subtracting a baseline
function (often a value function V(s))
" Provides more informative feedback:

" Decrease the probability of worse-than-average actions
" Increase the probability of better-than-average actions

" Helps to further reduce variance in policy gradient estimates
A™(s,a) = Q™(s,a) — V™(s)

I | -
5 i I |
A3 A4 A5 -

I A2 . A4 A5
A1 A2

W N =2 O =~ N W



Training of A2C

= Connection between Q-value and value function

Qn(sl a) = T(S, a) + y]Es’~p(s'|s,a),a'~n9 (a’|s') [QCD (S’; a,)]
— T(S; Cl) + yIEs’~p(s’|s,a) [Vn(S’)]

" To approximate the advantage function
A™(s,a) = Q™(s,a) —V"(s)

=r(s,a) -

3 yIES’~p(S'|S,a) [Vn(S’) — Vn(S)]

~ r(s,a) -

-y (VE(s") — V(s))

Sample the next
state s’



Case Studies of Reinforcement Learning!

= Atari game playing
= Robot Locomotion
" |Language assistants



Case Studies: Atari Game Playing
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Case Studies: Atari Game Playing

= MDP:

= State: image of game screen
= 25684*84 possible states
" Processed with hand-designed feature vectors or neural

networks - e s oo
= Action: combination of arrow keys + button (18) »E W /e
" Transition T: game code (don’t have access) I:g 2 g e e *
* Reward R: game score (don’t have access) E S

" Very similar to our pacman MDP

" Use approximate Q learning with neural
] [Human-level control through deep
networks and e-greedy exploration to solve reinforcement learning, Mnih et al, 2015)



Case Studies: Robot Locomotion

= https://www.youtube.com/watch?v=cqvAgcQl6s4



Case Studies: Robot Locomotion

MDP:

= State: image of robot camera + N joint angles + accelerometer + ...
= Angles are N-dimensional continuous vector!
= Processed with hand-designed feature vectors or neural networks
= Action: N motor commands (continuous vector!)
= Can’t easily compute max Q(s’, a) when a is continuous
= Use policy search methods or adapt Q learning to continuous actions

* Transition T: real world (don’t have access)

= Reward R: hand-designed rewards
= Stay upright, keep forward velocity, etc

Learning in the real world may be slow and unsafe
* Build a simulator and learn there first, then deploy in real world

[Extreme Parkour
with Legged Robots,
Cheng et al, 2023]



Case Studies: Language Assistants

Plan a trip Help me pick

Write a text message Tell me a fun fact

@' 2 DeepSeek, REMIEIMR!

BAIMEMENR. EXH. BEESMHEIERS, BERNESREHKIE~

QB RERE R @ BAER ©



Case Studies: Language Assistants

= Step 1: train large language model to mimic human-written text
" Query: “What is population of Berkeley?”

* Human-like completion: “This question always fascinated me!”

" Step 2: fine-tune model to generate helpful text
" Query: “What is population of Berkeley?”
" Helpful completion: “Itis 117,145 as of 2021 census”

= Use Reinforcement Learning in Step 2



Case Studies: Language Assistants

= MDP:

= State: sequence of words seen so far (ex. “What is population of Berkeley? ”)
= 100,0001°90 possible states
= Huge, but can be processed with feature vectors or neural networks
= Action: next word (ex. “It”, “chair”, “purple”, ...) (so 100,000 actions)
= Hard to compute max Q(s’, a) when max is over 100K actions!
" Transition T: easy, just append action word to state words
= s: “My name” a: “is“ s’: “My name is”
= Reward R: ???

= Humans rate model completions (ex. “What is population of Berkeley? ”)
= “Itis 117,145 +1 “It is 5“: -1 “Destroy all humans“: -1

= Learn a reward model R and use that (model-based RL)

= Often use policy gradient (Proximal Policy Optimization) but looking into Q Learning



Summary

Exploration in Q-learning
= Epsilon greedy; optimistic function
Scaling up with feature representations and approximation

Policy gradient
= REINFORCE; Actor-Critic

Some case studies

Next lecture: deep RL



