

MAT8034: Machine Learning

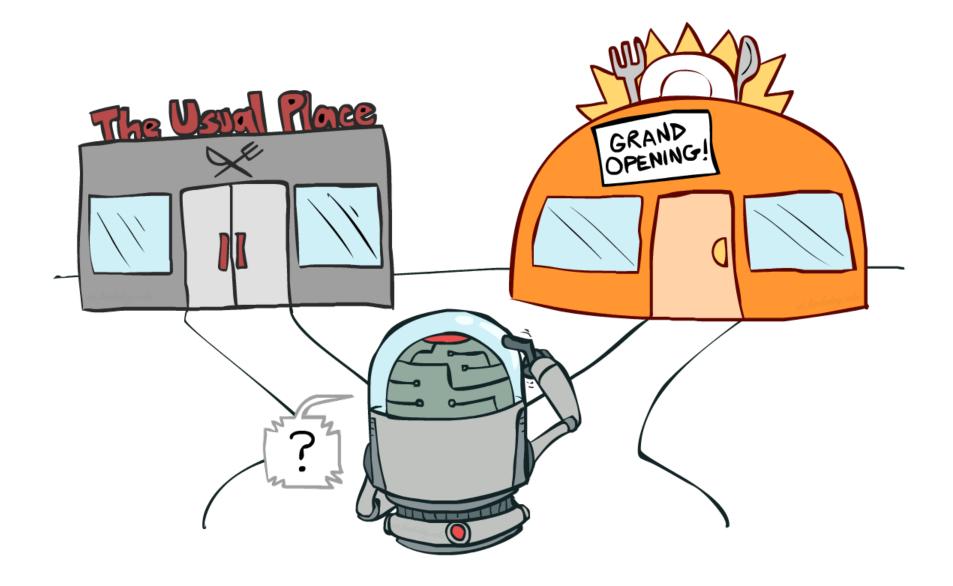
Reinforcement Learning II

Fang Kong

https://fangkongx.github.io/Teaching/MAT8034/Spring2025/index.html

Slide credits: ai.berkeley.edu

Exploration vs. Exploitation



Exploration vs. Exploitation

- **Exploration**: try new things
- **Exploitation**: do what's best given what you've learned so far
- Key point: pure exploitation often gets stuck in a rut and never finds an optimal policy!

Exploration method 1: E-greedy

E-greedy exploration

- Every time step, flip a biased coin
- With (small) probability ε, act randomly
- With (large) probability 1-ε, act on current policy

Properties of *ɛ*-greedy exploration

- Every s,a pair is tried infinitely often
- Does a lot of stupid things
 - Jumping off a cliff *lots of times* to make sure it hurts
- Keeps doing stupid things for ever
 - Decay ɛ towards 0

Demo Q-learning – Epsilon-Greedy – Crawler

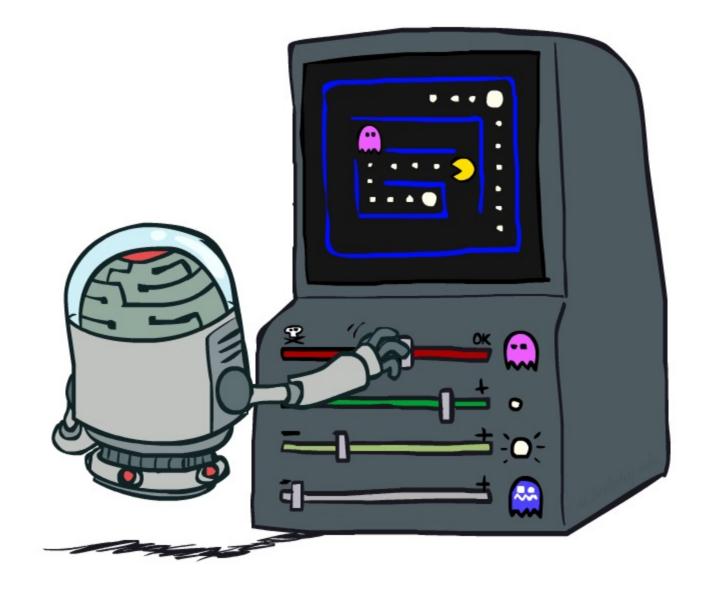
Method 2: Optimistic Exploration Functions

- Exploration functions implement this tradeoff
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g., $f(u,n) = u + k/\sqrt{n}$
- Regular Q-update:

- $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_a Q(s',a)]$
- Modified Q-update:
 - $Q(s,a) \leftarrow (1-\alpha) \cdot Q(s,a) + \alpha \cdot [R(s,a,s') + \gamma \max_a f(Q(s',a'),n(s',a'))]$
- Note: this propagates the "bonus" back to states that lead to unknown states as well!

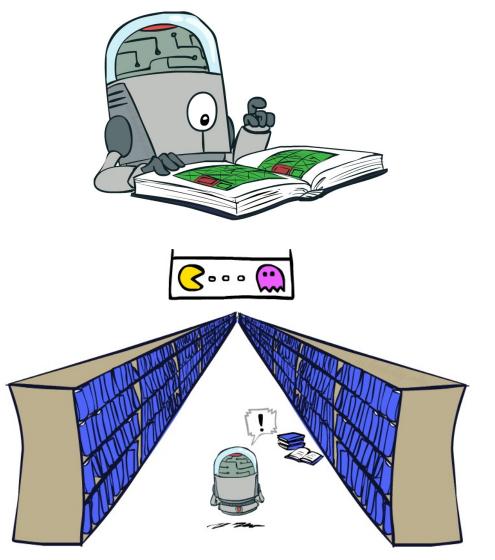
Demo Q-learning – Exploration Function – Crawler

Approximate Q-Learning



Generalizing Across States

- Basic Q-Learning keeps a table of all Q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the Q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - Can we apply some machine learning tools to do this?



[demo – RL pacman]

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

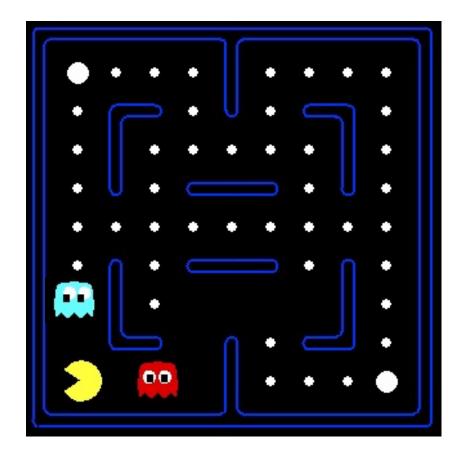
Demo Q-Learning Pacman – Tiny – Watch All

Demo Q-Learning Pacman – Tiny – Silent Train

Demo Q-Learning Pacman – Tricky – Watch All

Feature-Based Representations

- Solution: describe a state using a vector of <u>features</u>
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost f_{GST}
 - Distance to closest dot
 - Number of ghosts
 - 1 / (distance to closest dot) f_{DOT}
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Can also describe a q-state (s, a) with features (e.g., action moves closer to food)



Linear Value Functions

- We can express V and Q (approximately) as weighted linear functions of feature values:
 - $V_{\theta}(s) = \theta_1 f_1(s) + \theta_2 f_2(s) + \dots + \theta_n f_n(s)$
 - $Q_{\theta}(s,a) = \theta_1 f_1(s,a) + \theta_2 f_2(s,a) + \dots + \theta_n f_n(s,a)$
- Advantage: our experience is summed up in a few powerful numbers
 - Can compress a value function for chess (10⁴³ states) down to about 30 weights!
- Disadvantage: states may share features but have very different expected utility!

SGD for Linear Value Functions

• Goal: Find parameter vector θ that minimizes the mean squared error between the true and approximate value function

$$J(\theta) = \mathbb{E}_{\pi}\left[\frac{1}{2}\left(V^{\pi}(s) - V_{\theta}(s)\right)^{2}\right]$$

Stochastic gradient descent:

$$\begin{aligned} \theta &\leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta} \\ &= \theta + \alpha \big(V^{\pi}(s) - V_{\theta}(s) \big) \frac{\partial V_{\theta}(s)}{\partial \theta} \end{aligned}$$

Supervised Learning for Value Function Approximation

- Let $V^{\pi}(s)$ denote the true target value function
- Use supervised learning on "training data" to predict the value function:
 (s₁, G₁), (s₂, G₂), ..., (s_T, G_T)
- For each data sample

$$\theta \leftarrow \theta + \alpha \big(\frac{G_t}{C_t} - V_{\theta}(s) \big) x(s_t)$$

Temporal-Difference (TD) Learning Objective

$$\theta \leftarrow \theta + \alpha \big(V^{\pi}(s) - V_{\theta}(s) \big) x(s)$$

- In TD learning, $r_{t+1} + \gamma V_{\theta}(s_{t+1})$ is a data sample for the target
- Apply supervised learning on "training data": $\langle s_1, r_2 + \gamma V_{\theta}(s_2) \rangle, \langle s_2, r_3 + \gamma V_{\theta}(s_3) \rangle, \dots, \langle s_T, r_T \rangle$
- For each data sample, update

$$\theta \leftarrow \theta + \alpha \big(r_{t+1} + \gamma V_{\theta}(s_{t+1}) - V_{\theta}(s) \big) x(s_t)$$

Q-Value Function Approximation

Approximate the action-value function:

$$Q_{\theta}(s,a) \simeq Q^{\pi}(s,a)$$

• Objective: Minimize the **mean squared error**:

$$J(\theta) = \mathbb{E}_{\pi} \left[\frac{1}{2} (Q^{\pi}(s, a) - Q_{\theta}(s, a))^2 \right]$$

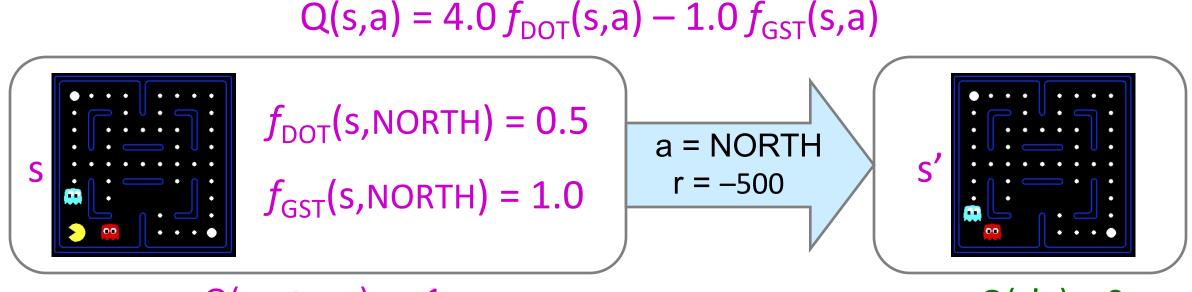
Stochastic Gradient Descent on a single sample

$$\theta \leftarrow \theta + \alpha \big(r_{t+1} + \gamma Q_{\theta}(s_{t+1}, a_{t+1}) - Q_{\theta}(s, a) \big) \frac{\partial Q_{\theta}(s, a)}{\partial \theta}$$

Intuitive interpretation

- Original Q-learning rule tries to reduce prediction error at s,a:
 Q(s,a) ← Q(s,a) + α · [R(s,a,s') + γ max_{a'} Q (s',a') Q(s,a)]
- Instead, we update the weights to try to reduce the error at s,a:
 - $W_i \leftarrow W_i + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') Q(s,a)] \partial Q_w(s,a) / \partial W_i$
 - $= \mathbf{w}_{i} + \alpha \cdot [R(s,a,s') + \gamma \max_{a'} Q(s',a') Q(s,a)] \mathbf{f}_{i}(s,a)$
- Intuitive interpretation:
 - Adjust weights of active features
 - If something bad happens, blame the features we saw; decrease value of states with those features. If something good happens, increase value!

Example: Q-Pacman



Q(s,NORTH) = +1r + $\gamma \max_{a'} Q(s',a') = -500 + 0$ $Q(s',\cdot)=0$

difference = -501
$$W_{DOT} \leftarrow 4.0 + \alpha[-501]0.5$$

 $w_{GST} \leftarrow -1.0 + \alpha[-501]1.0$

 $Q(s,a) = 3.0 f_{DOT}(s,a) - 3.0 f_{GST}(s,a)$

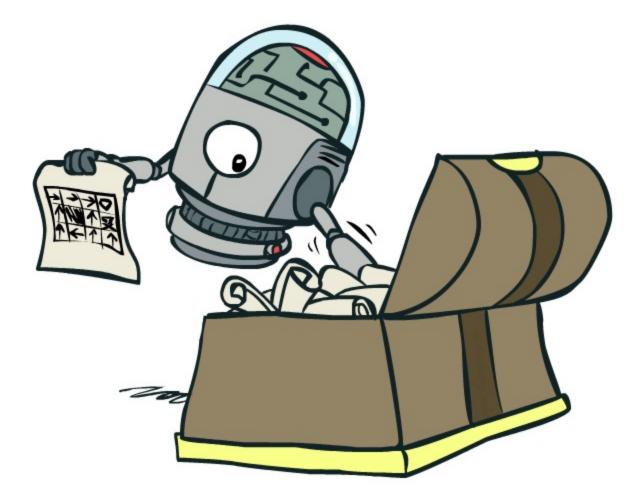
Demo Approximate Q-Learning -- Pacman

Approaches to reinforcement learning

- 1. Model-based: Learn the model, solve it, execute the solution
- 2. Learn values from experiences, use to make decisions
 - a. Direct evaluation
 - b. Temporal difference learning
 - c. Q-learning

3. Optimize the policy directly

Policy Search



Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions were probably horrible estimates of future rewards, but they still produced good decisions
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing (or gradient ascent!) on feature weights

Parameterized Policy

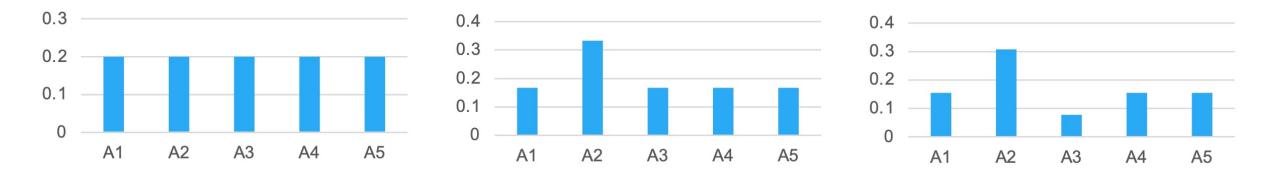
• A policy can be parameterized as $\pi_{\theta}(a|s)$

- The policy can be deterministic: $a = \pi_{\theta}(s)$
 - Or stochastic: $\pi_{\theta}(a|s) = P(a|s;\theta)$
- θ represents the parameters of the policy

Policy Gradient

Simplest version:

- Start with initial policy $\pi(s)$ that assigns probability to each action
- Sample actions according to policy π
- Update policy:
 - If an episode led to high utility, make sampled actions more likely
 - If an episode led to low utility, make sampled actions less likely



Policy Gradient in a Single-Step MDP

- Consider a simple single-step Markov Decision Process (MDP)
 - The initial state is drawn from a distribution: $s \sim d(s)$
 - The process terminates after one action, yielding a reward r_{sa}
- Expected Value of the Policy

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(a|s) r_{sa}$$

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{s \in S} d(s) \sum_{a \in A} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} r_{sa}$$

Likelihood Ratio Trick

• Uses the identity: $\frac{\partial}{\partial t}$

$$\frac{\partial \pi_{\theta}(a|s)}{\partial \theta} = \pi_{\theta}(a|s) \frac{1}{\pi_{\theta}(a|s)} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta}$$
$$= \pi_{\theta}(a|s) \frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta}$$

The gradient of the expected return can be written as:

$$J(\theta) = \mathbb{E}_{\pi_{\theta}}[r] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(a|s) r_{sa}$$

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{s \in S} d(s) \sum_{a \in A} \frac{\partial \pi_{\theta}(a|s)}{\partial \theta} r_{sa}$$

$$= \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(a|s) \frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} r_{sa}$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} r_{sa} \right]$$

$$= \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} r_{sa} \right]$$

$$Can be approximated by sampling s from d(s) and a from \pi_{\theta}$$

Extension to Multi-step MDP

Replace the instantaneous reward r(s,a) with the Q-value

$$\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} Q^{\pi_{\theta}}(s,a) \right]$$

Richard Sutton's Reinforcement Learning: An Introduction (Chapter 13)

REINFORCE Algorithm

• Use the cumulative reward G_t as an estimator for $Q^{\pi_{\theta}}(s, a)$

• initialize θ arbitrarily for each episode $\{s_1, a_1, r_2, \dots, s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta}$ do for t = 1 to T - 1 do $\theta \leftarrow \theta + \alpha \frac{\partial}{\partial \theta} \log \pi_{\theta}(a_t | s_t) G_t$

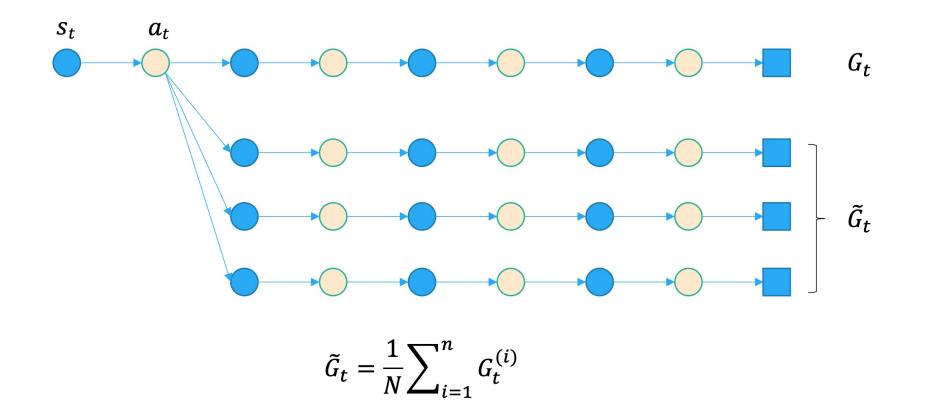
end for

end for

return θ

REINFORCE Algorithm 2

Can average multiple roll-out returns



Limitations of the REINFORCE Algorithm

Episodic data requirement

- REINFORCE typically requires tasks to terminate in order to compute the full return G_t
- Low data efficiency
 - In practice, REINFORCE needs a large amount of training data to achieve stable learning
- High variance in training (most critical issue)
 - The estimated returns from sampled trajectories can have very high variance, making gradient estimates noisy and unstable

Actor-Critic

Intuition

- REINFORCE estimates the policy gradient using Monte Carlo returns
 G_t to approximate Q(s_t, a_t)
- Why not learn a trainable value function Q_φ(s, a) to estimate Q^π(s, a) directly?
- Actor and critic

Training of the Actor-Critic Algorithm

- Critic: $Q_{\phi}(s, a)$
 - Learns to accurately estimate the action-value under the current actor policy

$$Q_{\Phi}(s,a) \simeq r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a),a' \sim \pi_{\theta}(a'|s')} [Q_{\Phi}(s',a')]$$

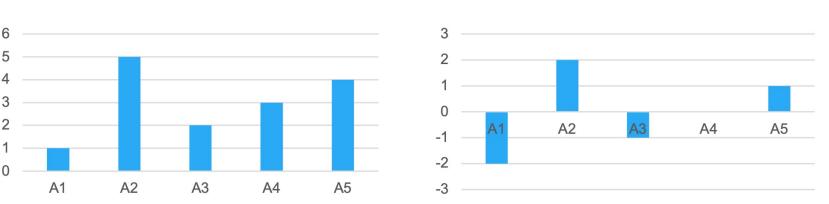
- Actor: $\pi_{\theta}(a|s)$
 - Learns to take actions that maximize the critic's estimated value

$$J(\theta) = \mathbb{E}_{s \sim p, \pi_{\theta}}[\pi_{\theta}(a|s)Q_{\Phi}(s, a)]$$

$$\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_{\theta}} \left[\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} Q_{\Phi}(s,a) \right]$$

A2C: Advantageous Actor-Critic

- Idea: Normalize the critic's score by subtracting a baseline function (often a value function V(s))
 - Provides more informative feedback:
 - Decrease the probability of worse-than-average actions
 - Increase the probability of better-than-average actions
 - Helps to further reduce variance in policy gradient estimates



$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

Training of A2C

Connection between Q-value and value function

$$\begin{aligned} Q^{\pi}(s,a) &= r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a),a' \sim \pi_{\theta}(a'|s')} \left[Q_{\Phi}(s',a') \right] \\ &= r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} [V^{\pi}(s')] \end{aligned}$$

To approximate the advantage function

$$\begin{aligned} A^{\pi}(s,a) &= Q^{\pi}(s,a) - V^{\pi}(s) \\ &= r(s,a) + \gamma \mathbb{E}_{s' \sim p(s'|s,a)} [V^{\pi}(s') - V^{\pi}(s)] \\ &\simeq r(s,a) + \gamma \big(V^{\pi}(s') - V^{\pi}(s) \big) \end{aligned}$$

Sample the next state s'

Case Studies of Reinforcement Learning!

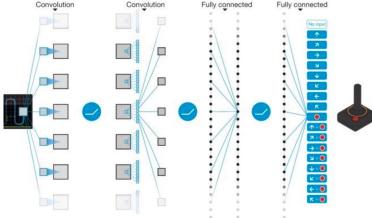
- Atari game playing
- Robot Locomotion
- Language assistants

Case Studies: Atari Game Playing

Case Studies: Atari Game Playing

MDP:

- State: image of game screen
 - 25684*84 possible states
 - Processed with hand-designed feature vectors or neural networks
- Action: combination of arrow keys + button (18)
- Transition T: game code (don't have access)
- Reward R: game score (don't have access)
- Very similar to our pacman MDP
- Use approximate Q learning with neural networks and ε-greedy exploration to solve



[Human-level control through deep reinforcement learning, Mnih et al, 2015]

Case Studies: Robot Locomotion

https://www.youtube.com/watch?v=cqvAgcQl6s4

Case Studies: Robot Locomotion

MDP:

- State: image of robot camera + N joint angles + accelerometer + ...
 - Angles are N-dimensional continuous vector!
 - Processed with hand-designed feature vectors or neural networks
- Action: N motor commands (continuous vector!)
 - Can't easily compute max Q(s', a) when a is continuous
 - Use policy search methods or adapt Q learning to continuous actions
- Transition T: real world (don't have access)
- Reward R: hand-designed rewards
 - Stay upright, keep forward velocity, etc
- Learning in the real world may be slow and unsafe
 - Build a simulator and learn there first, then deploy in real world

[Extreme Parkour with Legged Robots, Cheng et al, 2023]

Case Studies: Language Assistants

ChatGPT	
Plan a trip	Help me pick
to explore the Madagascar wildlife on a budget	an outfit that will look good on camera
Write a text message	Tell me a fun fact
asking a friend to be my plus-one at a wedding	about the Roman Empire

我可以帮你写代码、读文件、写作各种创意内容,请把你的任务交给我吧~



Case Studies: Language Assistants

- Step 1: train large language model to mimic human-written text
 - Query: "What is population of Berkeley?"
 - Human-like completion: "This question always fascinated me!"
- Step 2: fine-tune model to generate helpful text
 - Query: "What is population of Berkeley?"
 - Helpful completion: "It is 117,145 as of 2021 census"
- Use Reinforcement Learning in Step 2

Case Studies: Language Assistants

MDP:

- State: sequence of words seen so far (ex. "What is population of Berkeley?")
 - 100,000^{1,000} possible states
 - Huge, but can be processed with feature vectors or neural networks
- Action: next word (ex. "It", "chair", "purple", ...) (so 100,000 actions)
 - Hard to compute max Q(s', a) when max is over 100K actions!
- Transition T: easy, just append action word to state words
 - s: "My name" a: "is" s': "My name is"
- Reward R: ???
 - Humans rate model completions (ex. "What is population of Berkeley?")
 - "It is 117,145": +1 "It is 5": -1 "Destroy all humans": -1
 - Learn a reward model R and use that (model-based RL)
- Often use policy gradient (Proximal Policy Optimization) but looking into Q Learning

Summary

- Exploration in Q-learning
 - Epsilon greedy; optimistic function
- Scaling up with feature representations and approximation
- Policy gradient
 - REINFORCE; Actor-Critic
- Some case studies

Next lecture: deep RL